RSA加密算法是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行,它经历了各种攻击,至今未被完全攻破。RSA加密算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman。但RSA加密算法的安全性一直未能得到理论上的证明。
RSA加密算法解析 :
首先, 找出三个数, p, q, r,
其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数......
p, q, r 这三个数便是 private key
接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1).....
这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了.....
再来, 计算 n = pq.......
m, n 这两个数便是 public key
编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n....
如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t),
则每一位数均小於 n, 然後分段编码......
接下来, 计算 b == a^m mod n, (0 <= b < n),
b 就是编码後的资料......
解码的过程是, 计算 c == b^r mod pq (0 <= c < pq),
於是乎, 解码完毕...... 等会会证明 c 和 a 其实是相等的
如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b......
他如果要解码的话, 必须想办法得到 r......
所以, 他必须先对 n 作质因数分解.........
要防止他分解, 最有效的方法是找两个非常的大质数 p, q,
使第三者作因数分解时发生困难.........
<定理>
若 p, q 是相异质数, rm == 1 mod (p-1)(q-1),
a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq,
则 c == a mod pq
证明的过程, 会用到费马小定理, 叙述如下:
m 是任一质数, n 是任一整数, 则 n^m == n mod m
(换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m)
运用一些基本的群论的知识, 就可以很容易地证出费马小定理的........
<证明>
因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数
因为在 modulo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq
1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时,
则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q-1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq
2. 如果 a 是 p 的倍数, 但不是 q 的倍数时,
则 a^(q-1) == 1 mod q (费马小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq
3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上
4. 如果 a 同时是 p 和 q 的倍数时,
则 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.
这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq)....
但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n,
所以这就是说 a 等於 c, 所以这个过程确实能做到编码解码的功能.....
RSA加密算法的安全性依赖于大数分解
RSA加密算法的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解RSA加密算法就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前,RSA 加密算法的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n必须选大一些,因具体适用情况而定。
RSA加密算法的速度较慢,一般只用于少量数据加密
由于进行的都是大数计算,使得RSA加密算法最快的情况也比DES加密算法慢上倍,无论是软件还是硬件实现。速度一直是RSA加密算法的缺陷。一般来说RSA加密算法只用于少量数据加密。
RSA加密算法在选择密文攻击面前很脆弱
一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。
RSA加密算法公共模数攻击方法
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。
RSA加密算法的小指数攻击
有一种提高RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有所提高。但这样做是不安全的,对付办法就是e和d都取较大的值。
RSA加密算法的缺点
A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。
目前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。
小知识之公钥:
公钥是与私钥算法一起使用的密钥对的非秘密一半。公钥通常用于加密会话密钥、验证数字签名,或加密可以用相应的私钥解密的数据。公钥和私钥是通过一种算法得到的一个密钥对(即一个公钥和一个私钥)其中的一个向外界公开,称为公钥;另一个自己保留,称为私钥。
实操指南:如何监控聊天中的敏感信息?这款秘籍软件,轻松掌握微信聊天动态
电影《摩登时代》里,流水线工人就连在吃饭时都要用“自动喂食机”提高效率,这样才能挤出更多时间投入工作。虽然现在打工人不至于此,但有些老板仍然放心不下……像企业聊天记录往往蕴含着大量的敏感信息。为了确保信息安全,监控聊天中的敏感信息成为了一项必要且重要的工作。以下是一款秘籍软件,帮助你轻松掌握微信聊天动态,确保信息安全。...
怎么监控员工上班情况?2024企业管理的四种方法,老板们不容错过
怎么监控员工上班情况?2024企业管理的四种方法,老板们不容错过员工上班在干什么?摸鱼?打游戏?老板该怎么管理?如何才能监视怎么监控员工上班情况?监控员工上班情况可以通过多种方式实现,但重要的是要确保这些措施既合法又合规,同时尊重员工的隐私权。以下是一些建议的方法:一、制定明确的行为规范与奖惩制度1、制定行为规范: 企...
怎么监控员工上班情况?快速监控员工状态
怎么监控员工上班情况?快速监控员工状态在企业管理中,如何有效监控员工上班情况,确保工作效率与团队协作,是每位老板都需面对的课题。本文为您揭秘五招快速监控员工状态的实用技巧,不仅能帮助您实时掌握员工动态,还能提升整体管理效率。作为老板,掌握这些技巧,将让您在企业管理中游刃有余,轻松应对各种挑战。一、使用安企神软件实时监控...
安企神桌管软件:提升企业管理效率的全能助力
安企神桌管软件:提升企业管理效率的全能助力在当今竞争激烈的商业环境中,企业必须不断优化管理和运营流程,以提高效率和盈利能力。安企神桌管软件正是这样一款面向中小企业的管理工具,能够帮助企业在多方面提升综合管理水平。本文将详细探讨安企神桌管软件给企业带来的多重价值。一、全方位的管理功能安企神桌管软件是一款集成了多种管理功能...
安企神:揭开终端安全管理软件的神秘面纱
安企神:揭开终端安全管理软件的神秘面纱在数字化日益普及的今天,企业的网络安全问题愈发显得重要。数据泄露、网络攻击等事件层出不穷,如何保障企业内部信息的安全性成为众多企业关心的焦点。安企神终端安全管理软件应运而生,作为一款专业的安全管理工具,它的功能与优势备受关注。本文将全面揭秘安企神软件的核心功能、应用场景及其在终端安...