Java和.NET的系统类库里都有封装DES对称加密的实现方式,但是对外暴露的接口却各不相同,甚至有时会让自己难以解决其中的问题,比如Java加密后的结果在.NET中解密不出来等,由于最近项目有跨Java和.NET的加解密,经过我的分析调试,终于让它们可以互相加密解密了。
DES加密
DES是一种对称加密(Data Encryption Standard)算法,以前我写过一篇文章:.NET中加密解密相关知识,有过简单描述。
DES算法一般有两个关键点,第一个是加密算法,第二个是数据补位。
加密算法常见的有ECB模式和CBC模式:
ECB模式:电子密本方式,这是Java封装的DES算法的默认模式,就是将数据按照8个字节一段进行DES加密或解密得到一段8个字节的密文或者明文,最后一段不足8个字节,则补足8个字节(注意:这里就涉及到数据补位了)进行计算,之后按照顺序将计算所得的数据连在一起即可,各段数据之间互不影响。
CBC模式:密文分组链接方式,这是.NET封装的DES算法的默认模式,它比较麻烦,加密步骤如下:
1、首先将数据按照8个字节一组进行分组得到D1D2……Dn(若数据不是8的整数倍,就涉及到数据补位了)
2、第一组数据D1与向量I异或后的结果进行DES加密得到第一组密文C1(注意:这里有向量I的说法,ECB模式下没有使用向量I)
3、第二组数据D2与第一组的加密结果C1异或以后的结果进行DES加密,得到第二组密文C2
4、之后的数据以此类推,得到Cn
5、按顺序连为C1C2C3……Cn即为加密结果。
数据补位一般有NoPadding和PKCS7Padding(Java中是PKCS5Padding)填充方式,PKCS7Padding和PKCS5Padding实际只是协议不一样,根据相关资料说明:PKCS5Padding明确定义了加密块是8字节,PKCS7Padding加密快可以是1-255之间。但是封装的DES算法默认都是8字节,所以可以认为他们一样。数据补位实际是在数据不满8字节的倍数,才补充到8字节的倍数的填充过程。
NoPadding填充方式:算法本身不填充,比如.NET的padding提供了有None,Zeros方式,分别为不填充和填充0的方式。
PKCS7Padding(PKCS5Padding)填充方式:为.NET和Java的默认填充方式,对加密数据字节长度对8取余为r,如r大于0,则补8-r个字节,字节为8-r的值;如果r等于0,则补8个字节8.比如:
加密字符串为为AAA,则补位为AAA55555;加密字符串为BBBBBB,则补位为BBBBBB22;加密字符串为CCCCCCCC,则补位为CCCCCCCC88888888.
.NET中的DES加密
对于.NET,框架在System.Security.Cryptography命名空间下提供了DESCryptoServiceProvider作为System.Security.Cryptography.DES加密解密的包装接口,它提供了如下的4个方法:
public override ICryptoTransform CreateDecryptor(byte[] rgbKey, byte[] rgbIV)
public override ICryptoTransform CreateEncryptor(byte[] rgbKey, byte[] rgbIV)
public override void GenerateIV()
public override void GenerateKey()
从.NET类库封装情况,加解密需要传入一个Key和IV向量。而且Key必须为8字节的数据,否则会直接抛异常出来,当使用ECB模式下,不管传入什么IV向量,加密结果都一样。示例代码如下:
public static string EncryptWithJava(string key, string str)
{
if (key.Length < 8 || string.IsNullOrEmpty(str))
{
throw new Exception("加密key小于8或者加密字符串为空!");
}
byte[] bKey = Encoding.UTF8.GetBytes(key.Substring(0, 8));
byte[] bIV = IV;
byte[] bStr = Encoding.UTF8.GetBytes(str);
try
{
DESCryptoServiceProvider desc = new DESCryptoServiceProvider();
desc.Padding = PaddingMode.PKCS7;//补位
desc.Mode = CipherMode.ECB;//CipherMode.CBC
using (MemoryStream mStream = new MemoryStream())
{
using (CryptoStream cStream = new CryptoStream(mStream, desc.CreateEncryptor(bKey, bIV), CryptoStreamMode.Write))
{
cStream.Write(bStr, 0, bStr.Length);
cStream.FlushFinalBlock();
StringBuilder ret = new StringBuilder();
byte[] res = mStream.ToArray();
foreach (byte b in res)
{
ret.AppendFormat("{0:x2}", b);
}
return ret.ToString();
}
}
}
catch
{
return string.Empty;
}
}
由于为ECB模式,因此IV这里设置什么值都是可以的,当为CBC模式下,则需要设置为其他值,比如:public static byte[] IV = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 },才能正常加密解密。
Java中的DES加密
Java的Javax.crypto.Cipher包下,提供了加密解密的功能,它的静态getInstance方法,可以返回一个Cipher对象,一般有public static final Cipher getInstance(String transformation)方法,transformation为:algorithm/mode/padding,分别表示算法名称,比如DES,也可以在后面包含算法模式和填充方式,但也可以只是算法名称,如为:"DES/CBC/PKCS5Padding","DES"等。Java中默认的算法为ECB,默认填充方式为PKCS5Padding.Cipher的Init方法用来初始化加密对象,常见的有:
public final void init(int opmode, Key key, AlgorithmParameterSpec params)
public final void init(int opmode,Key key, SecureRandom random)
用SecureRandom时,一般用于不需要IV的算法模式,示例代码如下:
public static String encrypt2(String src) throws Exception {
SecureRandom sr = new SecureRandom();
DESKeySpec ks = new DESKeySpec(KEY.getBytes("UTF-8"));
SecretKeyFactory skf = SecretKeyFactory.getInstance("DES");
SecretKey sk = skf.generateSecret(ks);
Cipher cip = Cipher.getInstance("DES/CBC/PKCS5Padding");//Cipher.getInstance("DES");
IvParameterSpec iv2 = new IvParameterSpec(IV);
cip.init(Cipher.ENCRYPT_MODE, sk, iv2);//IV的方式
//cip.init(Cipher.ENCRYPT_MODE, sk, sr);//没有传递IV
String dest = byteToHex(cip.doFinal(src.getBytes("UTF-8")));
return dest;
}
当默认用DES,Java会用ECB模式,因此这里IV向量没有作用,这里,但当用CBC模式下,如果还是用SecureRandom,则每次加密的结果都会不一样,因为Java内部会用随机的IV来初始化Cipher对象,如示例代码,由于Cipher.getInstance("DES/CBC/PKCS5Padding")使用了CBC,因此我这里用的Javax.crypto.spec.IvParameterSpec包下的IvParameterSpec来初始化向量IV:
Private final static byte[] IV = new byte[] {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01};
总结
对于.NET和Java在使用DES对称加密时,需要大家指定一样的算法和填充模式,并且Java在写DES加解密算法时,还需要根据创建Cipher对象的不同,正确使用IV向量。在不同系统需要互相数据时,必须要明确的是加密算法,Key和算法模式,再根据不同模式是否需要IV向量,最后是填充模式。
实操指南:如何监控聊天中的敏感信息?这款秘籍软件,轻松掌握微信聊天动态
电影《摩登时代》里,流水线工人就连在吃饭时都要用“自动喂食机”提高效率,这样才能挤出更多时间投入工作。虽然现在打工人不至于此,但有些老板仍然放心不下……像企业聊天记录往往蕴含着大量的敏感信息。为了确保信息安全,监控聊天中的敏感信息成为了一项必要且重要的工作。以下是一款秘籍软件,帮助你轻松掌握微信聊天动态,确保信息安全。...
怎么监控员工上班情况?2024企业管理的四种方法,老板们不容错过
怎么监控员工上班情况?2024企业管理的四种方法,老板们不容错过员工上班在干什么?摸鱼?打游戏?老板该怎么管理?如何才能监视怎么监控员工上班情况?监控员工上班情况可以通过多种方式实现,但重要的是要确保这些措施既合法又合规,同时尊重员工的隐私权。以下是一些建议的方法:一、制定明确的行为规范与奖惩制度1、制定行为规范: 企...
怎么监控员工上班情况?快速监控员工状态
怎么监控员工上班情况?快速监控员工状态在企业管理中,如何有效监控员工上班情况,确保工作效率与团队协作,是每位老板都需面对的课题。本文为您揭秘五招快速监控员工状态的实用技巧,不仅能帮助您实时掌握员工动态,还能提升整体管理效率。作为老板,掌握这些技巧,将让您在企业管理中游刃有余,轻松应对各种挑战。一、使用安企神软件实时监控...
安企神桌管软件:提升企业管理效率的全能助力
安企神桌管软件:提升企业管理效率的全能助力在当今竞争激烈的商业环境中,企业必须不断优化管理和运营流程,以提高效率和盈利能力。安企神桌管软件正是这样一款面向中小企业的管理工具,能够帮助企业在多方面提升综合管理水平。本文将详细探讨安企神桌管软件给企业带来的多重价值。一、全方位的管理功能安企神桌管软件是一款集成了多种管理功能...
安企神:揭开终端安全管理软件的神秘面纱
安企神:揭开终端安全管理软件的神秘面纱在数字化日益普及的今天,企业的网络安全问题愈发显得重要。数据泄露、网络攻击等事件层出不穷,如何保障企业内部信息的安全性成为众多企业关心的焦点。安企神终端安全管理软件应运而生,作为一款专业的安全管理工具,它的功能与优势备受关注。本文将全面揭秘安企神软件的核心功能、应用场景及其在终端安...